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The Bahncard Problem

The Bahncard is a railway pass of the German railway
company, which provides a discount on all train tickets for a
fixed time period of pass validity.1

When a travel request arises, a traveler can buy the train ticket
with the regular price, or purchase a Bahncard first and get
entitled to a discount on all train tickets within its valid time.

The Bahncard problem is an online cost minimization problem,
whose objective is to minimize the overall cost of pass and
ticket purchases, without knowledge of future travel requests.

1https://www.bahn.com/en/offers/bahncard

4 / 66

https://www.bahn.com/en/offers/bahncard


Competitive Ratio

For online algorithms, we use competitive ratio to analyze
their performance.

Competitive Ratio

Competitive ratio is the worst-case ratio across all inputs
between the costs of the online algorithm and an optimal
offline one:

CRALG = max
∀I

ALG(I )

OPT(I )
, (1)

where I is an arrival instance of the given problem. ALG(I )
and OPT(I ) are respectively the cost of ALG and OPT
incurred in I .
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Extensions of the Bahncard Problem

The Bahncard problem reveals a recurring renting-or-buying
phenomenon, where an online algorithm needs to irrevocably
and repeatedly decide between

1. a cheap short-term solution, and

2. an expensive long-term one

with an unknown future.

We can find its applications in numerous applications in
computer systems. To name a few:

▶ Cloud reservation (reserved instances and spot instances)

▶ Edge caching (caching contents at the network edge with
extra cost)

▶ Refactoring versus working with a poor design

▶ ...
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BP(β,C ,T ) and the SUM Algorithm

The Bahncard problem is instantiated by three parameters and
denoted by BP(β,C ,T ), meaning that a Bahncard costs C ,
reduces any ticket price p to βp for some β ∈ [0, 1), and is
valid for a time period of T .

Fleischer was the first to study the Bahncard problem [1]. By
extending the optimal 2-competitive break-even algorithm for
ski-rental, Fleischer proposed an optimal deterministic online
algorithm named SUM for BP(C , β,T ), which is
(2− β)-competitive.2

2We will show how SUM works later.
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Learning-Augmented Algorithms

Learning-augmented algorithms aim to leverage
machine-learned predictions to improve the performance in
both theory and practice [2]. Algorithms with possibly
imperfect predictions, whose performance is measured with
respect to the quality of predictions, have found applications in
numerous important problems [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13].

For a comprehensive collection of the literature, see
https://algorithms-with-predictions.github.io/.
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Consistency and Robustness

Consistency and Robustness

Consistency refers to the competitive ratio under perfect
predictions while robustness refers to the upper bound of the
competitive ratio when the predictions can be arbitrarily bad.

text

Following the definition in [14, 3], we take the competitive
ratio of a learning-augmented online algorithm ALG as a
function CRALG(η) of the prediction error η. ALG is
δ-consistent if CRALG(0) = δ, and ϑ-robust if CRALG(η) ≤ ϑ for
all η.
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A Recent Work on the Bahncard Problem

Bamas et al. designed an algorithm, PDLA, for BP(β,C ,T ),
that is λ/(1− β + λβ) · (eλ − β)/(eλ − 1)-consistent and
(eλ − β)/(eλ − 1)-robust when C → ∞ (in which case the
optimal solution is to never buy any Bahncard), where
λ ∈ (0, 1] is a hyper-parameter [15].3

Their algorithm is built on the online primal-dual framework
proposed in [16]. Notably, their algorithm demands a complete
solution as input advice, which implies a predicted complete
sequence of travel requests over an arbitrarily long timespan,
which is impractical for real employment.

3Their method is limited to scenarios with slotted time and uniform ticket prices for all travel requests. BTW,
their result is quite weak.
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Our Results

We develop an algorithm, named PFSUM, which takes
short-term predictions on future trips as inputs.

PFSUM
At any time t when a travel request arises and there is no a
valid Bahncard, a prediction on the total (regular) ticket price
of all travel requests in the upcoming interval [t, t + T ) is
made. Incorporating this prediction, PFSUM purchases a
Bahncard at time t when

1. the total ticket price in the past interval (t − T , t] is at
least γ and

2. the predicted total ticket price in [t, t + T ) is also at least
γ, where

γ :=
C

1− β
. (2)
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Our Results

Denoting by η the maximum prediction error, we derive that

CRPFSUM(η) =

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.
(3)

The result shows that PFSUM is 2/(1 + β)-consistent and
1/β-robust, and its competitive ratio degrades smoothly as the
prediction error increases.

We are the first to present the competitive ratio of the
designed algorithm (for the Bahncard problem) with any given
prediction error, rather than that with only endpoints (η = 0
and η → ∞).
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Problem Restated

BP(C , β,T ) is a request-answer game between an online
algorithm ALG and an adversary. The adversary presents a
finite sequence of travel requests σ = σ1σ2 · · · , where each σi

is a tuple (ti , pi) that contains the travel time ti ≥ 0 and the
regular ticket price pi ≥ 0. The travel requests are presented
in chronological order: 0 ≤ t1 < t2 < · · · .

ALG needs to react to each travel request σi . If ALG does not
have a valid Bahncard, it can opt to buy the ticket with the
regular price pi , or first purchase a Bahncard which costs C ,
and then pay the ticket price with a β-discount, i.e., βpi . A
Bahncard purchased at time t is valid during the time interval
[t, t + T ).
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Algorithm Cost and Competitive Ratio

We say σi is a reduced request of ALG if ALG has a valid
Bahncard at time ti . Otherwise, σi is a regular request of
ALG. We use ALG(σi) to denote ALG’s cost on σi :

ALG(σi) =

{
βpi ALG has a valid Bahncard at ti ,
pi otherwise.

(4)

We denote by ALG(σ) the total cost of ALG for reacting to all
the travel requests in σ. The competitive ratio of ALG can be
formally defined by CRALG := maxσ ALG(σ)/OPT(σ).
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Partial Cost Incurred in an Interval

We use ALG(σ; I) to denote the partial cost incurred during a
time interval I: ALG(σ; I) = C · x +

∑
i :ti∈I ALG(σi), where

x is the number of Bahncards purchased by ALG in I.
Additionally, we use c(σ; I) to denote the total regular cost in
I: c(σ; I) := ∑

i :ti∈I pi .

Given a time length l , we define the l-recent-cost of σ at time
t as c(σ; (t − l , t]). Similarly, we define the l-future-cost of σ
at time t as c(σ; [t, t + l)).
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Predicted Future Cost and Regular Recent Cost

When a travel request (t, p) arises, a short-term prediction of
the total regular cost in the time interval [t, t + T ) can be
made.

To represent prediction errors, we use ĉ(σ; [t, t + T )) to
denote the predicted total regular cost in [t, t + T ).
Sometimes we are concerned about the regular requests of an
algorithm ALG in a recent time interval. Thus, we further
define the regular l-recent-cost of ALG on σ at time t as

ALGr
(
σ; (t − l , t]

)
:=

∑

i :σi is a regular request of ALG in (t−l ,t]

pi . (5)
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Restrictions on OPT

Without loss of generality, we assume that an online algorithm
ALG or an optimal offline algorithm OPT considers purchasing
Bahncards at the times of regular requests only. The rationale
is that the purchase of a Bahncard at any other time can
always be delayed to the next regular request without
increasing the total cost.

Lemma 1
([1]) At any time t, if c

(
σ; [t, t + T )

)
≥ γ := C/(1− β),

OPT has at least one reduced request in [t, t + T ).

γ is known as the break-even point.

Corollary 2

At any time t, if the T -future-cost c
(
σ; [t, t + T )

)
< γ, OPT

does not purchase a Bahncard at t.
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An Optimal Offline Algorithm
An OPT can be obtained by finding the shortest (s, t)-path in
a graph constructed with the given travel request sequence σ
(can be computed with dynamic programming).

Figure 1: A travel request sequence and the constructed graph (see [1]).

19 / 66



An Optimal Online Algorithm: SUM

An optimal deterministic online algorithm for the Bahncard
problem is SUM, which is (2− β)-competitive [1].4 SUM
purchases a Bahncard at a regular request (t, p) whenever its
regular T -recent-cost at time t is at least γ, i.e.,

SUMr
(
σ; (t − T , t]

)
≥ γ. (6)

SUM is (2− β)-competitive (CRSUM = C+γ
C+βγ

= 2− β).

Notably, 2− β is best competitive ratio a deterministic online
algorithm can hope (see [1]).

4A randomized online algorithm can have smaller competitive ratio, which will not be covered in this slide.
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How SUMw Works

SUM purchases a Bahncard based on the cost incurred in the
past only. Our first attempt shifts the cost consideration for
Bahncard purchasing towards the future with the help of
predictions.

SUMw

At each regular request (t, p), SUMw predicts the total regular
cost in a prediction window (t, t + w ] where w (0 < w < T )
is the length of the prediction window. SUMw purchases a
Bahncard at a regular request (t, p) whenever the sum of the
regular (T − w)-recent-cost at t and the predicted total
regular cost in (t, t + w ] is at least γ, i.e.,

SUMr
w

(
σ; (t + w − T , t]

)
+ ĉ

(
σ; (t, t + w ]

)
≥ γ. (7)

SUMw reduces to SUM when w = 0.
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SUMw is at least (3− β)/(1 + β)-Consistent

Unfortunately, the consistency of SUMw is at least
(3− β)/(1 + β), which is even larger than SUM’s competitive
ratio of 2− β since β < 1.

As shown in Fig. 2, consider a travel request sequence σ of
five requests: (t1, ϵ), (t2, γ − ϵ), (t3, γ − 2ϵ), (t4, ϵ), and
(t5, ϵ), where t1 < t2 ≤ t1 + w < t4 + w − T < t1 + T < t3 <
t4 < t2 + T < t3 + w < t5 ≤ t4 + w .

time

ǫ ǫ

t1 t2 t3 t4

γ − 2ǫγ − ǫ

t5

ǫ

Figure 2: An example where the shaded rectangle (resp. bold line) is the
valid time of a Bahncard purchased by SUMw (resp. OPT).
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SUMw is at least (3− β)/(1 + β)-Consistent

For this σ, SUMw purchases two Bahncards at times t1 and t4
respectively, while OPT purchases a Bahncard at time t2.
SUMw purchases a Bahncard at t1 because t2 ≤ t1 + w and
ϵ+ (γ − ϵ) ≥ γ. SUMw does not purchase a Bahncard at t3
since t3 + w < t5 and
SUMr

w (σ; (t3+w−T , t3])+ĉ(σ; (t3, t3+w ]) = (γ−2ϵ)+ϵ < γ.
SUMw purchases a Bahncard at t4 because
t3, t4, t5 ∈ (t4 + w − T , t4 + w ] and the total ticket cost is γ.

When ϵ → 0, we have

SUMw (σ)

OPT(σ)
=

2C + β(γ + 2ϵ) + (γ − 2ϵ)

C + β(2γ − 2ϵ) + 2ϵ

→ 2C + βγ + γ

C + 2βγ
=

3− β

1 + β
. (8)
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Reviewing SUMw

SUMw fails because if a Bahncard is purchased at time t, it is
possible that most of the ticket cost in the interval
(t + w − T , t + w ] is incurred before t (e.g., the Bahncard
purchased at time t4 in Fig. 2). Consequently, only a small
fraction of the ticket cost is incurred from t onward and can
benefit from the Bahncard purchased. As a result, SUMw

suffers from the same deficiency as SUM.

We remark that it is not helpful to set the prediction window
length w to T , because the travel request arising at time t+T
(if any) is not covered by the Bahncard purchased at time t.

SUMw does not have any bounded robustness.
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How FSUM Works

What we have learned from SUMw is that the Bahncard
purchase condition should not be based on the total ticket
cost in a past time interval and a future prediction window.

Thus, our second algorithm FSUM (Future SUM) is designed
to purchase a Bahncard at a regular request (t, p) whenever
the predicted T -future-cost at time t is at least γ, i.e.,

ĉ
(
σ; [t, t + T )

)
≥ γ. (9)

Note that FSUM ̸= SUMT because the Bahncard purchase
condition of SUMT is ĉ(σ; (t, t + T ]) ≥ γ.
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FSUM is 2/(1 + β)-Consistent

Theorem 3
FSUM is 2/(1 + β)-consistent.

Proof.
When both FSUM and OPT do not have a valid Bahncard,
they pay the same cost for travel requests. Thus, we focus on
analyzing the cost ratio between FSUM and OPT in the time
intervals in which at least one of them has a valid Bahncard.
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FSUM is 2/(1 + β)-Consistent

Theorem 3
FSUM is 2/(1 + β)-consistent.

Proof.
To do so, we divide the timespan into epochs, denoted as
Ej := [µj , µj+1), where µj represents the time when FSUM
purchases its j-th Bahncard. Each epoch Ej is further
segmented into two phases: the on phase [µj , µj + T ) where a
valid Bahncard is held by FSUM, and the off phase
[µj + T , µj+1) where no valid Bahncard is held by FSUM.

In an on phase, OPT purchases at most one Bahncard, while
in an off phase, OPT does not make any Bahncard purchase
due to the assumption of perfect predictions and Corollary 2.
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FSUM is 2/(1 + β)-Consistent

Theorem 3
FSUM is 2/(1 + β)-consistent.

Proof.
If OPT purchases a Bahncard in the on phase of epoch Ej ,
there are three cases to consider.

Case I. If the Bahncard expires within the off phase of epoch
Ej , we analyze the cost ratio in epoch Ej .

time

︷ ︸︸ ︷on off

τiτi−1 + Tµj µj + T

︷ ︸︸ ︷

µj+1τi + T
s1 s3s2 s4 s5

t′

Figure 3: Case I. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.
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FSUM is 2/(1 + β)-Consistent

Theorem 3
FSUM is 2/(1 + β)-consistent.

Proof.
Case II. If the Bahncard expires during the on phase of the
next epoch Ej+1 and OPT does not purchase any new
Bahncard in that on phase, we analyze the cost ratio in epochs
Ej and Ej+1 together.

time

s2s1 s5

on off

s4

off ︷ ︸︸ ︷

s3 s6 s7

τiµj µj+1 µj+2µj + T µj+1 + Tτi + Tτi−1 + T

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

t′

Figure 3: Case II. The shaded rectangle is the valid time of a Bahncard
purchased by OPT.
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FSUM is 2/(1 + β)-Consistent

Theorem 3
FSUM is 2/(1 + β)-consistent.

Proof.
Case III. If OPT purchases another Bahncard in the on phase
of Ej+1, we move on to find the first epoch Ej+x (x ≥ 1) in
which Case I or II happens, and then analyze the cost ratio in
all epochs Ej ,Ej+1, ...,Ej+x by using the results of Cases I and
II.
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FSUM is 2/(1 + β)-Consistent

Theorem 3
FSUM is 2/(1 + β)-consistent.

Proof.
If OPT does not purchase a Bahncard in the on phase of Ej , it
must have purchased a Bahncard in the on phase of Ej−1 and
the Bahncard expires in the on phase of Ej , due to the
assumption of perfect predictions and Lemma 1. Thus, this
falls into one of the three cases above.

In all cases, the cost ratio between FSUM and OPT over all
these intervals is capped at 2/(1 + β) (e.g., C+βγ+γ

C+2βγ
, 2C+2βγ

C+2βγ
,

etc.), which completes the proof.
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FSUM has no Bounded Robustness

FSUM’s consistency generally better than SUM’s competitive
ratio since 2/(1 + β) < 2− β always holds for 0 < β < 1.

However, similar to SUMw , FSUM does not have any bounded
robustness. Consider a scenario where only one travel request
(t, p) arises with p → 0, but the predictor yields
ĉ(σ; [t, t + T )) ≥ γ. Then, FSUM purchases a Bahncard at
(t, p) and FSUM(σ)/OPT(σ) = (C + βp)/p → ∞.
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PFSUM Design Considerations

FSUM fails to achieve any bounded robustness because it
completely ignores the historical information in the Bahncard
purchase condition. Thus, the worst case is that the actual
ticket cost in the prediction window is close to 0, while the
predictor forecasts that it exceeds γ, in which case hardly
anything benefits from the Bahncard purchased.

On the other hand, we note that SUM achieves a decent
competitive ratio because a Bahncard is purchased only when
the regular T -recent-cost is at least γ, so that the Bahncard
cost can be charged to the regular T -recent-cost in the
competitive analysis.
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How PFSUM Works

Based on the above, we introduce a new algorithm PFSUM
(Past and Future SUM), in which the Bahncard purchase
condition incorporates the ticket costs in both a past time
interval and a future prediction window, but uses them
separately rather than taking their sum.

PFSUM
PFSUM purchases a Bahncard at a regular request (t, p)
whenever (i) the T -recent-cost at t is at least γ, and (ii) the
predicted T -future-cost at t is also at least γ:

{
c(σ; (t − T , t]) ≥ γ,
ĉ(σ; [t, t + T )) ≥ γ.

(10)

Note that PFSUM considers the T -recent-cost, but SUM
considers only the regular T -recent-cost.
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Preliminaries for Analysis

To analyze PFSUM, we again focus on the time intervals in
which at least one of PFSUM and OPT has a valid Bahncard,
and analyze the cost ratio between PFSUM and OPT in these
intervals.

Given a travel request sequence σ, we use µ1 < · · · < µm to
denote the times when PFSUM purchases Bahncards.
Accordingly, the timespan can be divided into epochs
Ej := [µj , µj+1) for 0 ≤ j ≤ m, where we define µ0 = 0 and
µm+1 = ∞.

Each epoch Ej (except E0) starts with an on phase [µj , µj +T )
(the valid time of the Bahncard purchased by PFSUM),
followed by an off phase [µj + T , µj+1) (in which there is no
valid Bahncard by PFSUM). Epoch E0 has an off phase only.
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Prediction Error

We define η as the maximum prediction error among all the
predictions used by PFSUM:

η := max
(t,p)

∣∣∣ĉ
(
σ; [t, t + T )

)
− c

(
σ; [t, t + T )

)∣∣∣, (11)

where (t, p) is a regular request.

Then, for any travel request (t, p) in an off phase, we have

c
(
σ; [t, t + T )

)
− η ≤ ĉ

(
σ; [t, t + T )

)

≤ c
(
σ; [t, t + T )

)
+ η. (12)

32 / 66



Preliminaries for Analysis

Lemma 4
The total regular cost in an on phase is at least γ − η.

Proof.
If c(σ; [µj , µj + T )) < γ − η for some j , it follows from (12)
that
ĉ(σ; [µj , µj + T )) ≤ c(σ; [µj , µj + T )) + η < γ − η + η = γ.
By (10), it means that PFSUM would not purchase a
Bahncard at time µj , leading to a contradiction. Thus, we
must have c(σ; [µj , µj + T )) ≥ γ − η.
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Preliminaries for Analysis

Lemma 5
In an off phase, the total regular cost in any time interval
[t, t + l) of length l ≤ T is less than 2γ + η.

Proof.
Assume on the contrary that c(σ; [t, t + l)) ≥ 2γ + η. We
take the earliest travel request (t ′, p) in [t, t + l) such that
c(σ; [t, t ′]) ≥ γ. This implies c(σ; [t, t ′)) < γ. Then, we have
c(σ; [t ′, t + l)) = c(σ; [t, t + l))− c(σ; [t, t ′)) > 2γ + η − γ =
γ + η. Hence, c(σ; (t ′ − T , t ′]) ≥ c(σ; [t, t ′]) ≥ γ and
c
(
σ; [t ′, t ′+T )

)
≥ c(σ; [t ′, t+ l)) > γ+ η. By (12), the latter

further leads to ĉ(σ; [t ′, t ′ + T )) ≥ c(σ; [t ′, t ′ + T ))− η > γ,
which means that PFSUM should purchase a Bahncard at
time t ′, contradicting that t ′ ∈ [t, t + l) is in the off phase.
Hence, c(σ; [t, t + T )) < 2γ + η must hold.
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Preliminaries for Analysis

Lemma 6
Suppose a time interval [t, t + T ) overlaps with an off phase.
Among the total regular cost in [t, t + T ), let s2, s3 and s4
denote those in the preceding on phase, the off phase, and the
succeeding on phase respectively (see Fig. 3). If 0 ≤ η ≤ γ,
s2 ≤ γ and s4 ≤ γ, then the total regular cost in [t, t + T ) is
no more than 2γ + η, i.e., s2 + s3 + s4 ≤ 2γ + η.5

time

on off

s3

︷ ︸︸ ︷︷ ︸︸ ︷ on︷ ︸︸ ︷

s2 s4

t t+ Tt′

Figure 3: Illustration for Lemma 6. The shaded rectangle is the valid time
of a Bahncard purchased by OPT.

5The equality can be obtained when η = 0.
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Preliminaries for Analysis

Proof.
Assume on the contrary that s2 + s3 + s4 > 2γ + η. Then,
there is at least one travel request during the off phase. We
take the earliest travel request (t ′, p) in the off phase, such
that c(σ; [t, t ′]) ≥ γ. With a similar analysis to Lemma 5, we
can derive that PFSUM should purchase a Bahncard at time
t ′, contradicting that t ′ is in the off phase.
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PFSUM Analysis

To analyze PFSUM, we again focus on the time intervals in
which at least one of PFSUM and OPT has a valid Bahncard,
and analyze the cost ratio between PFSUM and OPT in these
intervals.
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PFSUM Analysis
Consider a maximal contiguous time interval throughout which
at least one of PFSUM and OPT has a valid Bahncard. As
shown in Fig. 4, there are 6 different patterns.

time

Pattern I (completely overlap)

time

Pattern II (off within)

time… time

x ≥ 0︷ ︸︸ ︷ x ≥ 0

time

Pattern V (on ~ off)
x ≥ 0︷ ︸︸ ︷

time

Pattern VI (on ~ on)

PFSUM OPT concerned interval

Pattern III (off ~ off) Pattern IV (off ~ on)

︷ ︸︸ ︷

x ≥ 1

… …

……

… ……

… …

… ……

… ……

︷ ︸︸ ︷

τi

τi+x+1 + T

τi µj+x µj+x + T

µj τi+x τi+x + T µj µj+xµj+x + T

µj µj + T τi τi + T

τi+x+1

Figure 4: All the 6 patterns of concerned time intervals in which either
PFSUM or OPT has a Bahncard.
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PFSUM Analysis

If OPT and PFSUM purchase a Bahncard at the same time,
the time interval is exactly an on phase (Pattern I), and the
cost ratio in it is 1 (Proposition 7).

Otherwise, there are 5 different cases: the time interval does
not overlap with any on phase (Pattern II); and the time
interval overlaps with at least one on phase – it can start at
some time in an on or off phase and end at some time in an
on or off phase, giving rise to four cases (Patterns III to VI).

In Patterns II to VI, we assume that none of the involved
Bahncards purchased by OPT are bought at the same time as
any Bahncards purchased by PFSUM.
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Pattern I

Proposition 7

(Pattern I) If OPT purchases a Bahncard at time τi at the
beginning of epoch Ej , i.e., τi = µj , then

PFSUM
(
σ; [µj , µj + T )

)

OPT
(
σ; [µj , µj + T )

) = 1. (13)
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Analyzing Patterns II to VI

If the cost ratios between PFSUM and OPT of Patterns II to
VI are all capped by the same bound, the competitive ratio of
PFSUM is given by this bound.

Unfortunately, this is not exactly true. In what follows, we
shall show that the cost ratios of Patterns II to V can be
capped by the same bound (Propositions 8 to 11), which is
the competitive ratio of PFSUM that we would like to prove.

For Pattern VI, we show that its cost ratio is capped by the
same bound if a particular condition holds, where we refer to
such Pattern VI as augmented Pattern VI (Proposition 12).
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Analyzing Patterns II to VI

For non-augmented Pattern VI, we show that it must be
accompanied by Patterns I to IV in the sense that a time
interval of non-augmented Pattern VI must be preceded (not
necessarily immediately) by a time interval of Pattern I, II, III
or IV.

We prove that the cost ratio of non-augmented Pattern VI
combined with Pattern I, II, III or IV is capped by the same
aforesaid bound (Propositions 13 to 14). This then completes
the analysis and shows that the competitive ratio of PFSUM is
given by this bound.
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Pattern II

Proposition 8

(Pattern II) If OPT purchases a Bahncard at time τi in the off
phase of an epoch Ej and the Bahncard expires in the same off
phase, i.e., µj + T ≤ τi < τi + T < µj+1, then

PFSUM
(
σ; [τi , τi + T )

)

OPT
(
σ; [τi , τi + T )

) <
2γ + η

(1 + β)γ + βη
. (14)

Proof.
By Lemma 5, c(σ; [τi , τi + T )) < 2γ + η. The result is then
obtained immediately.
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Analyzing Patterns III to VI

The proof technique of the following propositions for Patterns
III to VI is to divide the time interval concerned into
sub-intervals, where each sub-interval starts and ends at the
time when OPT or PFSUM purchases a Bahncard or a
Bahncard purchased by OPT or PFSUM expires.

Then, for 0 ≤ η ≤ γ and η > γ, we respectively derive the
upper bound of the cost ratio based on Lemmas 4 to 6. All
the bounds in Propositions 9 to 12 are tight (achievable).
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Pattern III

Proposition 9

(Pattern III) Denote by τi and τi+x+1 respectively the first and
last Bahncards purchased by OPT in Pattern III. The cost
ratio in the time interval of Pattern III satisfies

PFSUM
(
σ; [τi , τi+x+1 + T )

)

OPT
(
σ; [τi , τi+x+1 + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.

(15)
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Pattern IV

Proposition 10

(Pattern IV) Denote by τi and µj+x respectively the first
Bahncard purchased by OPT and the last Bahncard purchased
by PFSUM in Pattern IV. The cost ratio in the time interval of
Pattern IV satisfies

PFSUM
(
σ; [τi , µj+x + T )

)

OPT
(
σ; [τi , µj+x + T )

) ≤
{

2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.

(16)
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Pattern V

Proposition 11

(Pattern V) Denote by µj and τi+x respectively the first
Bahncard purchased by PFSUM and the last Bahncard
purchased by OPT in Pattern V. The cost ratio in the time
interval of Pattern V satisfies

PFSUM(σ; [µj , τi+x + T ))

OPT(σ; [µj , τi+x + T ))
≤

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.

(17)
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Augmented Pattern VI

We refer to Pattern VI as augmented Pattern VI if the total
regular cost in the last on phase involved is at least γ.
Proposition 12 shows that the cost ratio of augmented Pattern
VI is capped by the same bound as Patterns III to V.

Proposition 12

(Augmented Pattern VI) Denote by µj and µj+x respectively
the first and last Bahncards purchased by PFSUM in Pattern
VI. If the total regular cost in the on phase of Ej+x is at least
γ, the cost ratio in the time interval of Pattern VI satisfies

PFSUM(σ; [µj , µj+x + T ))

OPT(σ; [µj , µj+x + T ))
≤

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.

(18)
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Non-Augmented Pattern VI

Now, we examine non-augmented Pattern VI. Note that the
time intervals of Patterns V and VI cannot exist in isolation.
By the definition of PFSUM, when a Bahncard is purchased at
time µj , the total regular cost in the preceding interval
(µj − T , µj ] is at least γ. Consequently, by Lemma 1,6 OPT
must purchase a Bahncard whose valid time overlaps with
(µj − T , µj ].

To deal with non-augmented Pattern VI that starts at time µj

for some j , we backtrack from µj to find out what happens
earlier. Our target is to identify all possible patterns that
might precede Pattern VI.

6It is obvious that Lemma 1 is also applicable to a left-open and right-closed interval of length T .
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Pattern Graph

Note that the time interval (µj − T , µj ] definitely intersects
with the off phase of epoch Ej−1 and may also intersect with
the on phase of Ej−1 (if the off phase of Ej−1 is shorter than
T ). Therefore, it is possible for all Patterns I to VI to precede
Pattern VI.

If Pattern I, IV or VI precedes Pattern VI, there is an off phase
in between, in which neither PFSUM nor OPT holds a valid
Bahncard.
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Pattern Graph
Fig. 5 presents a pattern graph to illustrate all possible
concatenations of patterns preceding Pattern VI. In this graph,
a node represents a pattern, and an edge from node i to node
j means pattern i can precede pattern j .

V VI

II

III

IV

I

Figure 5: Pattern graph.

Since every Pattern V or VI must be preceded by some
pattern, the backtracking will always encounter a time interval
of Pattern I, II, III or IV. We stop backtracking at the first
Pattern I, II, III or IV encountered.
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Backtracking

We use p1 ⊕ p2 to denote the composite of pattern p1 followed
by pattern p2; use py to denote a sequence comprising y
consecutive instances of pattern p; and use {p1, . . . , pn} ⊕ pj
to represent all possible composite patterns of the form pi ⊕ pj
for each i = 1, . . . , n.

Then, the patterns encountered in the backtracking can be
represented by

{I, II, III, IV} ⊕ {V,VI}y ⊕ VI, (19)

where y ≥ 0.
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Backtracking

▶ Following the earlier argument, for each VI in {V,VI}y of
(19), the total regular cost in the last on phase of Pattern
VI and the following off phase is at least γ. It is easy to
see that the cost ratio between PFSUM and OPT in the
time interval of such Pattern VI is no larger than that of
augmented Pattern VI and hence the upper bound given
in Proposition 12.

▶ For each V in {V,VI}y of (19), the cost ratio of Pattern
V is capped by the same bound based on Proposition 11.

Now, we only need to prove that the cost ratio of
non-augmented Pattern VI combined with Pattern I, II, III or
IV at the beginning of (19) is also capped by the same bound.
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Pattern VI Proceeded by Pattern II or III

Proposition 13

The cost ratio in the combination of a time interval of Pattern
VI and a time interval of Pattern II or III is bounded by

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.
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Pattern VI Proceeded by Pattern I or IV

Proposition 14

The cost ratio in the combination of a time interval of Pattern
VI and a time interval of Pattern I or IV encountered in
backtracking is bounded by

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.
(20)

Proof.
Consider Pattern IV. When analyzing the cost ratio of Pattern
IV in Proposition 10, it is assumed that the total regular cost
in the last on phase is at least γ − η. In IV of (19), the total
cost of travel requests in the last on phase of Pattern IV and
the following off phase is at least γ, following the earlier
argument. Thus, there is an additional cost of at least η.
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Pattern VI Proceeded by Pattern I or IV

Proposition 14

The cost ratio in the combination of a time interval of Pattern
VI and a time interval of Pattern I or IV encountered in
backtracking is bounded by

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.
(20)

Proof.
Therefore, we can “migrate” an additional cost of η to the
non-augmented Pattern VI at the end of (19) and make the
latter become an augmented Pattern VI so that the result of
Proposition 12 can be applied. Meanwhile, the proof of
Proposition 10 still applies to the Pattern IV even if the cost η
is removed from the last on phase.
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Pattern VI Proceeded by Pattern I or IV

Proposition 14

The cost ratio in the combination of a time interval of Pattern
VI and a time interval of Pattern I or IV encountered in
backtracking is bounded by

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.
(20)

Proof.
Hence, after migrating the cost of η, the Patterns IV and VI
involved have the same upper bound of cost ratio given in
(20).
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Competitive Ratio of PFSUM

By the above analysis and Propositions 8 to 14, we have:

Theorem 15
PFSUM has a competitive ratio of

CRPFSUM(η) =

{
2γ+(2−β)η
(1+β)γ+βη

0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη

η > γ.
(21)

By letting η = 0, it is easy to see that the consistency of
PFSUM is 2/(1 + β). Note that the competitive ratio of (21)
is a continuous function of the prediction error η. It increases
from 2/(1 + β) to (4− β)/(1 + 2β) as η increases from 0 to
γ, and further increases from (4− β)/(1 + 2β) towards 1/β as
η increases from γ towards infinity. Hence, PFSUM is
1/β-robust.
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Experimental Settings

We conduct extensive experiments comparing PFSUM with
SUM [1], FSUM, and PDLA [15], under various parameter
settings.

To accommodate PDLA, we discretize time while setting a
sufficiently large timespan, closely approximating a continuous
time scenario.
▶ Input distributions.

▶ Referring to the experimental setup of [17], we consider two
main types of traveler profiles: commuters, and occasional
travelers. We model the inter-request time of occasional
travelers using an exponential distribution with a mean of 2,
i.e. exp(λ = 1

2 ).
▶ For each generated request sequence, we investigate three

types of ticket price distributions: a Normal distribution, a
Uniform distribution, and a Pareto distribution.
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Experimental Settings

▶ Noisy prediction.
▶ The predictions are generated by adding noise to the original

instance, following the methodology used by [15].
▶ For each day in a given instance, there is a probability p of

removing the travel request on that day, if it exists.
▶ Meanwhile, there is also a probability p of adding random

noise, sampled from the same distribution used for generating
ticket prices, to the price of the travel request, or simply
adding a travel request if no travel request exists on that day.

These two operations are executed independently. The total
regular cost of the perturbed instance in the interval [t, t + T )
is then used as the prediction ĉ(σ; [t, t + T )) at time (day) t.
Intuitively, the prediction error increases with the perturbation
probability.
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Experimental Results
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Figure 6: Experimental results.
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