

Dependent Function Embedding for Distributed Serverless Edge Computing

Hailiang Zhao @ ZJU.CS.CCNT http://hliangzhao.me

Motivation

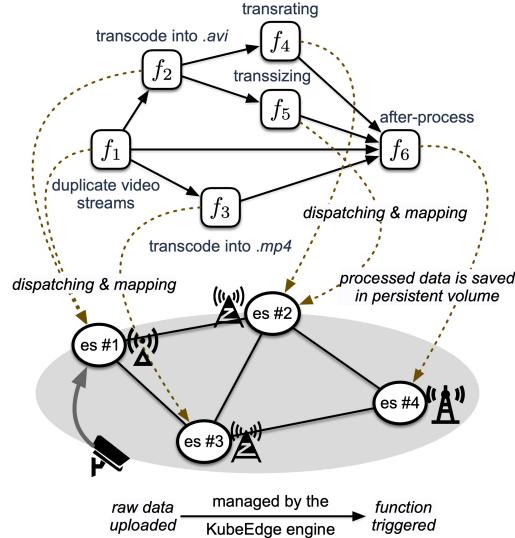
Function-as-a-Service (FaaS) is leading its way to the future service pattern of cloud computing

- lightweight containerization with Docker
- service orchestration with Kubernetes

Edge Computing is booming as a promising paradigm to push the computation and communication resources from cloud to the network edge

Their combination leads to Serverless Edge Computing

A Working Example

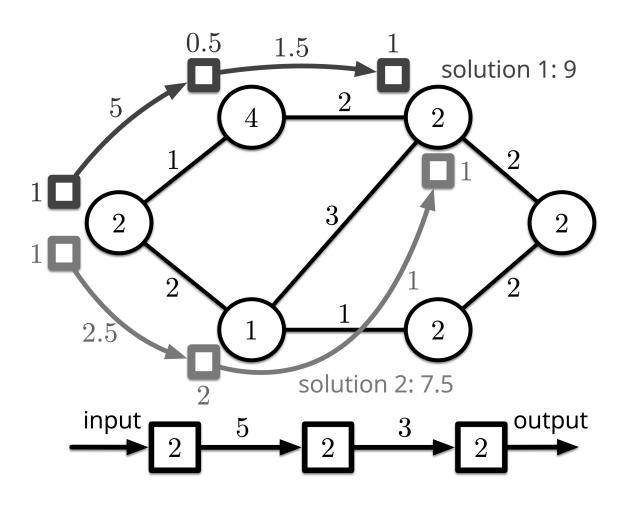


- The Serverless Application is a complex workflow (organized as a DAG in example)
- The Edge servers are modeled as an undirected connected graph

A surveillance camera, uploads the raw video and the actions to take (for example, transcode the raw data into a new container format, such as .mp4, .avi, etc.) to a nearby edge server periodically.

How to minimize the Makespan?

Only Function Placement?



• Solution 1:

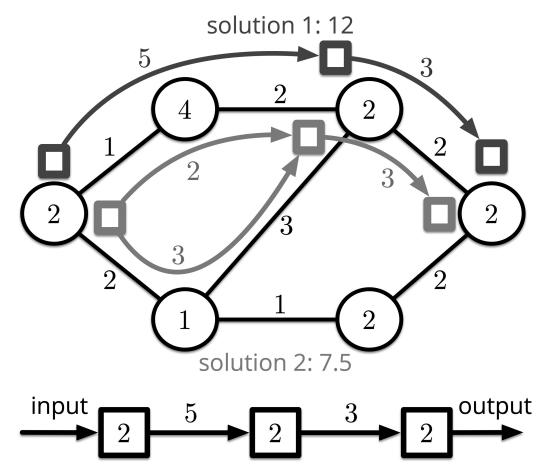
$$\frac{2}{2} + \frac{5}{1} + \frac{2}{4} + \frac{3}{2} + \frac{2}{2} = 9$$

• Solution 2:

$$\frac{2}{2} + \frac{5}{2} + \frac{2}{1} + \frac{3}{3} + \frac{2}{2} = 7.5$$

The traffic routing policy matters!

If Stream Splitting is Allowed



Solution 1:

$$\frac{2}{2} + \left(\frac{5}{1} + \frac{5}{2}\right) + \frac{2}{2} + \frac{3}{2} + \frac{2}{2} = 12$$

• Solution 2:

$$\frac{2}{2} + \max\left(\frac{2}{1} + \frac{2}{2}, \frac{3}{2} + \frac{3}{3}\right) + \frac{2}{2} + \frac{3}{2} + \frac{2}{2} = 7.5$$

Data stream splitting may help! (in the case the splitting cost can be ignored)

System Model

The heterogenous edge network is formulated as an undirected graph

- node: edge servers with different processing powers
- edge: virtual links (each is constitutive of several physical communication links with different forms)

An application is a Directed Acyclic Graph (DAG)

- function: has dependent relations
- data stream: measured in GB, function can not be executed before required data are received

We name this as dependent function embedding since it is actually embedding one graph into another

Involution of Finish Time

$$T(p(f_j)) = \max \left\{ \iota_{p(f_j)}, \max_{\forall i: e_{ij} \in \mathcal{E}} \left(T(p(f_i)) + t(e_{ij}) \right) \right\} + t(p(f_j))$$

- the earliest idle time of $p(f_j)$ (f_i,f_j) is a function pair with dependent relations
 - $p(f_i)$ is the edge server which f_i is dispatched to
 - $t(e_{i\,i})$ is the data transferring time of the stream e_{ij}
 - $T\Big(p(f_i)\Big)$ is the finish time of function f_i when it is dispatched to $p(f_i)$

Data Transferring Time

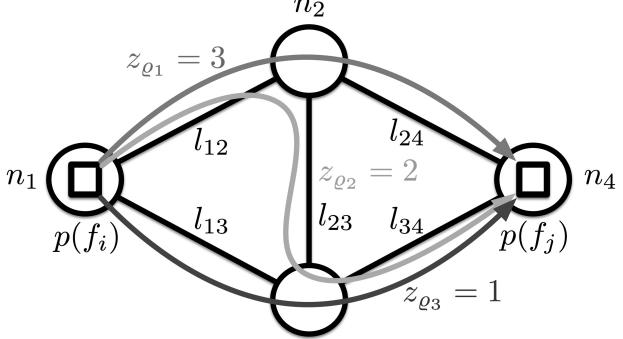
communication start-up cost

$$t(e_{ij}) \triangleq \sigma(p(f_i), p(f_j)) + \max_{\varrho \in \mathcal{P}(p(f_i), p(f_j))} \sum_{l_{mn} \in \varrho} \frac{z_{\varrho}}{b_{mn}^{\varrho}}$$

- (f_i,f_j) is a function pair with dependent relations
- $p(f_i)$ is the edge server which f_i is dispatched to
- $\mathcal{P}ig(p(f_i),p(f_j)ig)$ is the set of simple paths between $p(f_i)$ and $p(f_j)$
- z_{arrho} is the data stream size allocated on the simple path arrho
- b_{mn}^arrho is fixed bandwidth allocated for arrho and the function pair (f_i,f_j)

Data Transferring Time

$$t(e_{ij}) \triangleq \sigma(p(f_i), p(f_j)) + \max_{\rho \in \mathcal{P}(p(f_i), p(f_j))} \sum_{l_{mn} \in \varrho} \frac{z_{\varrho}}{b_{mn}^{\varrho}}$$



we draw 3 out of 4 simple n_3 paths between n_1 and n_4

Each simple path should be allocated with how much data stream?

Assumption: for each data stream, during its transferring, the bandwidth allocated to it is viewed as constant and $b_{mn}^{\varrho} \ll b_{mn}^{max}$

Problem Formulation

the last function's finish time

$$P: \min_{\vec{p}, \vec{z}} \max_{f \in \mathcal{F}_{exit}} T(p(f))$$

$$s.t. \qquad \sum_{\varrho \in \mathcal{P}(p(f_i), p(f_j))} z_{\varrho} = s_{ij}, \forall e_{ij} \in \mathcal{E} \implies \vec{z} > \vec{0}$$

the sum of the data stream allocated on each simple path is exactly the data stream with size \mathcal{S}_{ij}

How to place each function and split each data stream to minimize the Makespan?

Finding Optimal Substructure

$$T^{\star}(p(f_{j})) = \max \left\{ \max_{\forall i: e_{ij} \in \mathcal{E}} \left[\min_{p(f_{i}) \mid \{z_{\varrho}\}_{\forall \varrho \in \mathcal{P}_{ij}}} \left(T^{\star}(p(f_{i})) + t(e_{ij}) \right) \right], \iota_{p(f_{j})} \right\} + t(p(f_{j})) \right\}$$

* here means the earliest

the placement decision the stream mapping decision

- (f_i,f_j) is a function pair with dependent relations
- $p(f_i)$ is the edge server which f_i is dispatched to
- $t(e_{ij})$ is the data transferring time of the stream e_{ij}
- $T\Big(p(f_i)\Big)$ is the finish time of function f_i when it

is dispatched to $p(f_i)$

Optimal Data Mapping

When $p(f_i)$ is fixed, we can define the subproblem for stream mapping:

$$\mathbf{P}_{sub} : \min_{p(f_i), \{z_{\varrho}\}_{\forall \varrho \in \mathcal{P}_{ij}}} \mathbf{\Phi}_{ij} \triangleq \boxed{T^{\star}(p(f_i)) + t(e_{ij})}$$

$$\mathsf{decide} \ p(f_i) \ \mathsf{to} \ \mathsf{get} \ \mathsf{the} \ \mathsf{value}$$

- (f_i,f_j) is a function pair with dependent relations
- $t(e_{ij})$ is the data transferring time of the stream e_{ij}
- $T^{\star}ig(p(f_i)ig)$ is the earliest finish time of function f_i when it is dispatched to $p(f_i)$
- We need to decide where to place f_j and how e_{ij} is mapped

Optimal Data Mapping

Theorem. The optimal objective value of \mathbf{P}_{sub} is

$$\min_{\vec{z}_{ij}} \|\mathbf{A}\vec{z}_{ij}\|_{\infty} = \frac{s_{ij}}{\sum_{k=1}^{|\mathcal{P}_{ij}|} 1/A_{k,k}}$$

iff

$$A_{u,u}\vec{z}_{ij}^{(u)} = A_{v,v}\vec{z}_{ij}^{(v)}, 1 \le u \ne v \le |\mathcal{P}_{ij}|$$

The proof is omitted here.

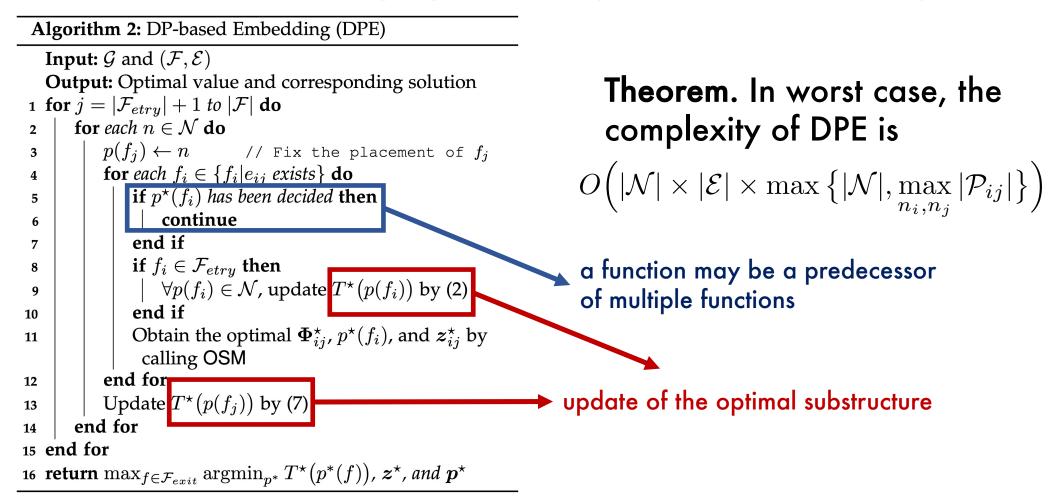
Optimal Data Mapping

Based on the theorem, we propose the algorithm OSM for solving \mathbf{P}_{sub}

```
Algorithm 1: Optimal Stream Mapping (OSM)
   Input: \mathcal{G}, the function pair (f_i, f_j), and p(f_j)
   Output: The optimal \Phi_{ij}^{\star}, p^{\star}(f_i), and z_{ij}^{\star}
1 for each m \in \mathcal{N} do in parallel
p(f_i) \leftarrow m
3 /* Obtain the m-th optimal \mathbf{\Phi}_{ij} by (11)
\mathbf{4} \quad \left| \quad \mathbf{\Phi}_{ij}^{(m)} \leftarrow \frac{s_{ij}}{\sum_{l} 1/A_{l}^{(m)}} + T^{\star}(p(f_i))\right)
5 end for
6 p^{\star}(f_i) \leftarrow \operatorname{argmin}_{m \in \mathcal{N}} \Phi_{ij}^{(m)}
7 Calculate \boldsymbol{z}_{ij}^{\star} by (10) and (12) with \mathbf{A} = \mathbf{A}^{(p^{\star}(f_i))}
```


DP-based Embedding

Based on the theorem, we propose the algorithm DPE for solving ${f P}$:



Simulation Results

Compared with a well-known heuristic HEFT, and a related state-of-the-art algorithm FixDoc, DPE achieves the smallest makespan over all the 2119 DAGs with absolute superiority under arbitrary parameters.

